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The problem of the action of a live load on underground installations involves the 
study of the interaction of the structure with its environment and an incident wave. This 
problem is very complex and is usually solved by numerical methods, although it is interes- 
ting that sufficiently rigorous analytic solutions can also be found. The latter are used 
to check the accuracy of the numerical results, as well as being of independent value. 

i. Let a loading wave of length [ move over the surface of a half-space filled with 
soft soil. The wave front has the constant velocity D. We assume that the wave has a 
triangular form which remains unchanged as it propagates. The pressure function in the 
wave has the form (Fig. I) 

Poo = Po( t + y)H(Dto --  xo), - - t  ~ y ~.~ O, ( 1 . 1 )  

where H(Dt 0 - x0) is the unit function; g ~ go~l; go = x~ --; Dto. A hollow, circular thin- 
walled cylindrical shell of radius R 0 is located in the half-space at the depth H 0. The 
thickness of the wall of the shell is h. It is necessary to determine the stresses and 
strains of the shell under the influence of a loading wave generated in the half-space due 
to the action of live load (i.i). 

We will determine the parameters of the wave and the motion of the medium by means of 
the method in [i], where a solution was found for a quasistatic problem concerning the 
propagation of three-dimensional waves in an ideal inelastic medium. We assume that the 
diagrams depicting the bulk deformation of the medium during loading and unloading are 
linear but different. Instantaneous loading occurs at the front, while unloading of the 
medium occurs behind the front. 

We will examine the case when the velocity D is greater than velocity of propagation 
of the loading strains in the soil a but less than the velocity of the unloading strains 
(a S D S al). Then the motion of the medium occurs in a region shaped in the form of a 
wedge and located between the front of the loading wave and the boundary of the medium. 
The pressure in the soil in the perturbation region, written in the moving cylindrical 
coordinate system rl, ~ (see Fig. i) connected with the loading front, is determined from 
the formula 

p (r 1, a) = Po 
~=1,2,3,... 

r~ sin (o~ -~ [3 -1- ~) 
P @1, Cr = Po t + sin ([3 -}- ~) - -  

[3n [an --~. (~ .-~- [3)] , r l > t .  

(1.2) 

Po . D 2 ! 
Here  Po =--pD 2' r l = k r ;  k 2 = l - - - - ' a ~ '  s in~ = @ ; t g ~ =  k ~ ; k l = c t g ~ ; a 2 i ~  IKld.ip, a ~  ; an = - ~ - ( n n - - ~ ) ;  ~n=l  

t 

- ~ - ( ~ n  + ~)lp i s  t h e  d e n s i t y o f  t h e  medium; a v i s  t h e  a n g u l a r  c o o r d i n a t e  o f  t h e  p e r t u r b a t i o n  
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front in the medium; Kid and K~d are the bulk elastic moduli for the loading and unloading 
branches of the compression diagram. The coordinate s of the polar and moving rectangular 
coordinate systems are connected by the relations r 2 -- z 2 q- g~l, g~ = g k=1, z ----- r sin ~, gl =r cos G$. 

In the moving coordinate system, the parameters of the wave and the motion of the medium 
are independent of the time. 

When the velocities coincide (D = a), the angle ~ = ~/2 and 

2 
( in  "i -- 1) s in r 

-- ,~=l,~,a .... a , n ( 2 n ~  t) ' r l  <~ I, ( 1 . 3 )  

( -  ~)~F (~+*) ~o~ [(2~ + ~) (= - =+)1 
p (r x, a ) =  Po a (n + t) (2n -~- 1) , r ,  > I .  

- n = 1 , 2 , 3 , , . .  

If we assume that the unloading of the medium is rigid, i.e. occurs without any 
change in the previously acquired density, then the pressure behind the front of the load- 
ing wave in the medium has the form 

r I sin (o~ ~- 2!3 ) 
p (r l, or = Po t + sin 2[~ q- 

+ ~ (-')~'sin[~(~-~+)+~] I" q<~l, 
~=l,~,a .... • (n,~ - -  2~) . 

/ s in  ~z ( - -1 )  n r7  vn sin [~gn (c~ - -  zr +) - -  111 / 
p (q, ~) = po [ ~ + ]~ ~ (~. + z~) j 

n=1,2,3,... 

(1.4) 
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where • = I -- ~n/~; ~ = i q-~n/~ Other possible cases are D > a I or a I = ~, fl = ~/2 and 

are examined in a similar manner. 
At the initial moment of time, the front of the loading wave contacts the shell at 

the point 0 = 0 (see Fig. I). The wave front advances over time and the angle through 

which the shell encounters the wave increases. We will designate this angle as • 

Within the range -~, ~ 8 ~ ~, the shell is subjected to the action of a wave load whose 

front moves in the circumferential direction. We will henceforth describe pressure through 

the use of polar coordinate system Pl, 0, which is connected with the center of the shell~ 
By means of parallel displacement and rotation of the coordinate axes y, z, we construct 

the system Y2, z2 and, then, polar system Pl, 8. Meanwhile, we also take into account the 
change in the scale along the r axis, which was used to derive Eqs. (1.2-1.4). Coordinate 
systems rl, ~ and @I, 0 are connected by the relations 

= arctg (AJA2), q = A 1 sin ~ + A~ cos ~. 

He re ,  A l = H k - - p l c o s ( 0 - - ~ ) ;  A 2 = p l s i n ( 0 - - ( ~ ) - -  ( g  cos ~ --  p~) --  t; H = H o / 1 ;  9 ~ = P , / I I  

The following relation exists between the coordinate of the front of the wave load and time 

during the contact period 

(1.5) 

J 

t = DtJl . /  

c ~ , ( t ) = a r c c o s ( i  tsin$)R , t s i n ~ < R ,  a , ( t ) = g / 2 ,  t s i n [ ~ > R , . R = R o / i .  

The dimensionless time of contact of half the shell by the load t+ = R/sin ~. 
Numerical Example. A half-space was filled with sandy soil having the density p = 

1.35-103 kg/m 3. The compression diagram of the soil is described by the power relation p = 
p0an where p0 = 372 MPa, a is the volume strain, and the exponent n = 3 [2]. In deter- 

mining the pressure (1.2-1.4), we approximate the diagram by means of linear functions with 

the bulk elastic modulus Kid = 11.3 MPa, ~d = 180 MPa. The value of Kid corresponds to the 
velocity of the elastic wave in the given soil a = 91 m/sec, which was obtained experimen- 

tally in [2]. Taking the Poisson's ratio of the soil as ~0 = 0.25, we find the Lame con- 
stants of the medium A = ~ = 6.75 MPa. The parameters of the loading wave: P0 = 2 MPa, 

= 2 m, D = 200 m/sec. The shell was located at the depth H 0 = i m. The radius of the 

shell R 0 = 0.5 m, h = 0.01 m. 

Figure 2 shows the diagram of pressure in the soil in relation to the coordinates r I 
and ~. It can be seen that within the range 0 ~ r ~ I the pressure at the wave front sud- 
denly increases. It then decreases with an increase in the~angle ~ and at ~ = ~ takes the 

value determined by Eq. (I.I). Pressure is low at r I > 1.2. It is positive within a nar- 
row zone near ~ ~ ~+ of the front. With an increase in ~, it changes sign, and it becomes 

zero at the boundary z = 0. The change in pressure over the radius within the range 0 

r ~ i is close to linear. 

Underground installations turn out to be loaded by a live load in the case of the 

action of pressure (1.2-1.4). Figure 3 shows a graph of pressure on a circular cylindrical 

surface of radius p, = 0.2275 m in relation to the angle 8 at t = 0.05, 0.15, 0.30, 0.40 
(lines 1-4). The arrows show the direction of motion of the front of the load at the given 
moments of time. It can be seen that the pressure in the region~,~e~ is initiallly 
close to uniform. Pressure becomes nonuniform as the angle of contact of the shell in- 
creases over time and reaches • at the moment t+ = 0.25~,. 

2. The authors of [3, 4] examined the reflection of a plastic plane shock wave from 
a flat barrier with normal incidence and incidence at an angle. In determining the wave 

load in the present case, we assume the shell to be rigidly fixed. We ignore diffraction 

phenomena and employ the principle of an isolated element. Then, using the results in [3, 
4], we write the expression for the local reflection coefficient in the form 

K o = K ,  cos O, ( 2 . 1 )  

where K, = i + $-n is the reflection coefficient with normal incidence of the wave front; 0 
is the angle of incidence at the moment of reflection. The pressure on the shell changes 
after reflection, since there is also a change in pressure (1.2-1.4) in the region --~/2~ 
0 ~  in the neighborhood of the radius R 0. 

947 



Fig. 4 

In the case of displacement of the shell as a rigid cylinder or deformation, the 
surrounding medium offers resistance to this movement. The resistance force of the medium 
is taken to be proportional to the radial displacement of the shell and equal to L,w 0 (where 
L, is the proportionality factor and w 0 is the radial displacement of the shell). 

We use the dimensionless quantities 

and we write the equations of motion of the shell in the form [5] 

0% + 0,o av b o (0%, O~w _N=o, ~+  .,_;_~+2_5_u+u,,+(~+q,)w 
02w 

+ ~ 77 ~- ~ p ,  (o, t). 
( 2 . 2 )  

2 ~. R 2 Here ,  ~ , =  ( t - - v  2) 9on2R~/(E12); ~ 2 = ( i - - v  2) 9D RoK, / (Eh ), q, = (1 - - v  ~) oL,/(Eh); p , ( O , t ) =  p(O, t) cosO; 
p(O, t ) l i s  t h e  p r e s s u r e  d e t e r m i n e d  f rom Eqs.  ( 1 . 2 - 1 . 5 ) ;  meanwhi le ,  - -~ , ( t )<~O<~a, ( t ) ;wo ,  vo- -  
are the radial and circumferential components'of the displacement of the shell; P0, v, and 
E are the density, Poisson's ratio, and elastic modulus of the shell material. For the 
displacements, we take the initial conditions 

o w (0, t ) . -  v (0, t) = o w (0, t) = --yf --y/- v (0, t) = 0 (t = 0). 

The pressure on the shell is asymmetric relative to the axis 0 = O, and we seek the 
deflections in t h e  form o f  t h e  e x p a n s i o n  

w = ~ [Wire (t) cos mO ~- W~m (t) sin mO], 

c~ 

v = ~__~ [Vim (t) sin m0 4- V2m (t) cos m0]~ ( 2 . 3 )  
7rt=l " 

We expand the external load into the series 

p ,  (0, t) = -~- + (a,~ 
7rt~l 

COS m0 + bm sin ra0)t 

+~,(t) 

where  am = (0, t) cos 0 cos mO dO; bm= 
--a,(t) 

(m=0.1,2,3,...) 

+o~,(t) 

y p (0, t)cos 0 sin m9 dO. 
--~,(t) 

(m= 1,2,3 , , , . )  

(2.4) 
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An expression for the proportionality factor L, was obtained in [6] by simultaneously 
solving the equations of motion of the shell and the surrounding elastic medium with the 
action of a harmonic compression wave. This is a complex expression which depends on the 
physical and geometric parameters of the medium and the shell, as well as the mode of de- 
formation. Here, we use the static variant of these coefficients 

L ,  = L o = 2 (~, + 2~) /R o, L ,  = L,~ = 4~t (rn + t) /(Rom),  (2.5) 

which correspond to axisymmetric motion and motion of the shell with the formation of m 
diametrical nodal lines. 

Inserting Eqs. (2~ into equations of motion (2.2) and equating coefficients 
with sin m8 and cos m8 to zero for each m, we obtain the system 

2 
~ # o  + o~oWo = - B~ @-, m = o, 

( 2 . 6 )  

w h e r e  ~m ~ = b ~ (m ~ - -  t )  2 + q~; ~ = i + b 2 + q,; qm = (1 _ ~2) R~Lm/(Eh); qo ~ (~ - -  ~2) R~Lo/(Eh ) ; 
d e n o t e  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  t i m e .  

We s o l v e  E q s .  ( 2 . 6 )  b y  t h e  m e t h o d  o f  v a r i a t i o n  o f  a r b i t r a r y  c o n s t a n t s  

t 

Wo (t) = 13=. a o ( , ) sm coo (t - "~) &,  
o J 

; t 

Wmff )  G ! a ~ ( ~ , , ~ )  " * - s i n  co~  ( t  -- ~) &,  

t 

W2m = - -  t3~*13~ ! b~ (~z,, ~) s in  to* (t - -  ~) d'r. 

the dots 

(2.7) 

Here, ~0=~0/~;* ~m~* ~/~. The quantity W I corresponds to the motion of the shell as 
a rigid cylinder. 

We use the solutions of (2.7) and the formula M--12(I_v2)R~ \ ~ ~ ~ ]/ to find the 
V 

stresses in the shell. After performing certain transformations, we reduce the expressions 
for the dimensionless displacement and the bending stress to the form 

w (0, t) = W o (t) - -  ~ F ~  (0, t), au (0, t) = 

- 2 R  ~ ( m  ~ - 1 )  F ~  ( o ,  t ) ,  
'rO,~ 2 

(2.8) 

w h e r e  Fm (0, t) = -~- p (x, ~) cos x cos m (x - -  9) s in  o),~ (t - -  ~) dx dr; A = l~'pK./(:~t~opo). T h e  d i m e n -  

J 

sional and dimensionless stresses are connected by the relation "~u = ou, ('i--v2)/E.l 
Figure 4 shows a graph of the stresses in the shell in relation to 0 at the~ moments 

of time t = 0.2 and 0.3 (solid and dashed lines). All of the calculations were performed 
on an "Elektronika-D3-28" computer. In summing the series (1.2-1.4) and (2.8), the number 
of terms of the series in the partial sum ~ was determined each time from the condition 
Sn+i/~ _< 0.05, where Sn+ 1 is the (n + l)-th term of the series. We used (2.8) to determine 
the stresses at fixed points of the shell cross section as a function of time at intervals 
of 0.05. About 2 min were required for the computation at the given point. Data from this 
calculation is shown in Fig. 4. 
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THEORY OF INELASTIC STRAIN BASED ON NONEQUILIBRIUM 

OF THE STATE OF THE MATERIAL 

E. I. Blinov and K. N. Rusinko UDC 539.374 

As any process which occurs at a finite rate, the inelastic strain of solids is al- 
ways a thermodynamically nonequilibrium process. The transition from the given state to 
the equilibrium state is completed by stress relaxation, which converts elastic strain to 
inelastic strain. The theory of the deformation of solids has been constructed within this 
framework. 

The basis of the classical theory of plasticity - the formation of inelastic strain 
when the given process is occurring in the equilibrium state - is only a convenient hypo- 
thesis [I, 2]. It leads to results which agree only with those experiments in which the 
rate of change in the external parameters is not greater than the rate of transition of the 
system (specimen) from the nonequilibrium state to the thermodynamically equilibrium state. 
In the theory of plasticity, such processes are referred to as quasistatic processes. In 
fact, fixing the external parameters in these processes means simultaneously fixing the 
parameters throughout the system as a whole. Indeed, nonequilibrium also exists during the 
process of plastic deformation, but the transition from this to the equilibrium state oc- 
curs only with a change in the external parameters - and is not seen after the latter be- 
come fixed. If the rate of change in these parameters is greater than the rate of tran- 
sition of the system from the nonequilibrium state to the equilibrium state, then the none- 
quilibrium remains even after the external parameters stop changing. ThUS, if they are 
fixed and subsequently kept constant, then the transition from the nonequilibrium state to 
the equilibrium state and associated phenomena, such as the formation of plastic strain, 
will continue until the establishment of thermodynamic equilibrium. The study of these 
phenomena was taken up in [3, 4]. 

If nonequilibrium during plastic deformation is not taken into account (and the state 
is assumed to be an equilibrium state), then, in accordance with the principle of the exis- 
tence of a ground state, such deformation is a reversible process [5-7], i.e. the laws of 
thermodynamics are violated. Thus, the process cannot occur in nature. It follows from 
this that the theory of plasticity is only a model representation of the phenomenon of 
plastic inelastic deformation. It describes it as a process which occurs under certain 
conditions. Neither the theoreticalor empirical accuracy requirements are high and the 
the existence of nonequilibrium is ignored. In fact, any inelastic deformation, including 
plastic deformation, is a nonequilibrium process. It is on this basis that the theory of 
plastic deformation has been constructed. 

i. Equilibrium and Nonequilibrium Stresses. Proceeding as in the nonequilibrium 
thermodynamics of solids and basing our theory on the main conservation laws and the prin- 

I ciples of objectivity, continuity, locality, and the existence of a ground state, we make 
the transition from an actual solid to a continuum and, within this continuum, we make 
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